Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913
نویسندگان
چکیده
Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid-liquid interface and pellicles at the liquid-air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.
منابع مشابه
Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913
BACKGROUND Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt t...
متن کاملPyomelanin from Pseudoalteromonas lipolytica reduces biofouling
Members of the marine bacterial genus Pseudoalteromonas are efficient producers of antifouling agents that exert inhibitory effects on the settlement of invertebrate larvae. The production of pigmented secondary metabolites by Pseudoalteromonas has been suggested to play a role in surface colonization. However, the physiological characteristics of the pigments produced by Pseudoalteromonas rema...
متن کاملDraft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea
Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.
متن کاملDomains III and I-2 , at the Entrance of the Binding Cleft, Play an Important Role in Cold Adaptation of the Periplasmic Dipeptide-Binding Protein (DppA) from the Deep-Sea Psychrophilic Bacterium Pseudoalteromonas sp. Strain SM9913 †
The peptide transporter from a cold-adapted bacterium has never been reported. In the present study, the dpp operon from the psychrophilic bacterium Pseudoalteromonas sp. strain SM9913 was cloned and analyzed. The dipeptide binding protein DppA of SM9913 was overexpressed in Escherichia coli, and its cold adaptation characteristics were studied. The recombinant DppA of SM9913 (PsDppA) displayed...
متن کاملExopolysaccharides Play a Role in the Swarming of the Benthic Bacterium Pseudoalteromonas sp. SM9913
Most marine bacteria secrete exopolysaccharide (EPS), which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913) by a comparison of wild SM9913 an...
متن کامل